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Abstract. The infinite-dimensional Abelian group of general Backlund-Calogero transfor- 
mations is constructed for the evolution equations which can be integrated by Gelfand- 
Dikij-Zakharov-Shabat spectral problem of an arbitrary order. The structure of the 
recursion operator and transformation properties of the Backlund-Calogero transforma- 
tions under the gauge group are considered. 

1. Introduction 

The inverse scattering transform (IST) method is a powerful tool for the investigation 
of the nonlinear differential equations (see e.g. [ 1-41). The main idea of the IST method 
consists in the mapping of the nonlinear evolution law of certain functions due to the 
nonlinear evolution equation into the linear (therefore, easily integrable) evolution 
law of the spectral data of the appropriate linear operator. Using the equations which 
solve the inverse problem (reconstruction of potential through the spectral data) one 
can solve, in principle, the Cauchy problem, find the infinite families of exact solutions 
(soliton type solitons) etc for the initial nonlinear evolution equation. Numerous 
partial differential and integro-diff erential equations have been investigated by this 
method [ 1-41, 

One of the main problems of the IST method is to describe effectively the class of 
nonlinear equations to which this method is applicable and analyse their group- 
theoretical structure. There exist different approaches to this problem. Historically 
the first method was the method of Lax pairs, i.e. the representation of the nonlinear 
equation in the Lax form dL/at = [L,  A ] .  The other methods are the dressing method 
of Zakharov and Shabat, the UV scheme of Zakharov and Mikhailov and lastly, the 
representation of nonlinear evolution equation as the commutativity condition 
[TI, TJ=O of the pair of linear operators T,  and T2 (see e.g. [l-31). 

A very simple and elegant method of describing the nonlinear equations integrable 
by the 2 x 2  matrix spectral problem was proposed by Ablowitz, Kaup, Newel1 and 
Segur [ 5 ] .  The idea of this approach consists in the calculation of so-called recursion 
operators starting from the given spectral problem. Then using the recursion operator 
and the dispersion function one can describe explicitly the whole infinite family of 
nonlinear evolution equations integrable by a given spectral problem. The advantage 
of the method proposed by Ablowitz et a1 [SI (AKNS method) in comparison with the 
Lax-pair method, and with UV scheme etc is that it allows us to find the general form 
of nonlinear equations connected with the given spectral problem in a compact and 
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convenient form and to calculate the infinite-dimensional group of general Backlund 
transformations for these equations. The AKNS method has been generalised to a 
number of different spectral problems [6-151. The recursion operator plays a central 
role in this method and the explicit calculations of this operator is the principal problem 
of the AKNS method. 

In the present paper we consider the general Gelfand-Dikij-Zakharov-Shabat 
spectral problem, i.e. the general Nth-order spectral problem: 

a N + V ,  - 1  ( x , f ) a N - ' +  . . .+ V, (X , t )a+Vo(X,  ? ) ) $ = A N $  (1.1) 

where a = a / a X ,  A is a spectral parameter and Vo(x, t ) ,  V , ( x ,  t ) ,  . . . , V N - l ( x ,  t )  are 
scalar functions such that V,  ( x ,  t )  - 0 ( K  = 0, 1, . . . , N - 1) in the framework of 
the AKNS method. Within the framework of the IST method, the spectral problem (1.1)  
has been considered by Zakharov and Shabat [ 161 for the first time. This problem and 
the associated evolution equations have been investigated using another technique by 
Gelfand and Dikij [ 171. 

In the present paper we construct the infinite-dimensional group of general Back- 
lund transformations of the potentials for the spectral problem (1.1)-the so-called 
Backlund-Calogero (BC)  group. In order to define the action of this BC group on the 
manifold of potentials { V ( x ,  t ) ;  V 2' ( Vo, V I ,  . . . , V N - l ) T }  one must calculate the recur- 
sion operator. The principal equation for this purpose is of the form A N % , y ( A )  = 9 x ( A ) ,  
where % and 9 are certain N x N matrix differential operators and x is a column 
with N components. The main feature of this equation is that the rank of matrix % 
is N - 1 and therefore the equation A "%x = %,y contains a constraint XP=, 1 k X k  = 0. 

The standard way to deal with the constraint z,"=, 1 k X k  = o is to solve it, for example, 
with respect to x N  and to introduce the quantity x ( ~ )  = ( x , , .  . . , x N - , ,  O)T which 
contains only independent variables. As a result, one obtains a ( N  - 1) x ( N  - 1) matrix 
recursion operator AN which acts on the space of independent variables x ( ~ ) :  h N x c N ,  = 
A N ~ ( N ) .  The case V N - ,  = O  was considered by us [14]. 

The second way of dealing with the constraint ZP=, I k X k  = 0 is not to solve it at all 
and define an action of the recursion operator A on the whole N-dimensional space 
of all components x , ,  . . . , x N  : A x  = A "x. One can introduce such a recursion operator 
but it is not defined uniquely. The uncertainty which appears in the calculation of 
such a recursion operator can be effectively described. With the use of this recursion 
operator A the action V +  V' of a BC group on the manifold of potentials is given by 
the relation 

(x)-m 

def 

N-I 

Bk(At ,  t ) ( x : v ' - A / z I v ) - f ( A t ,  t ) l t r $ = o  (1.2) 
k = O  

where & ( A t ,  t ) ,  f (At ,  t )  are arbitrary functions complete on A t ;  X:, At;, I' are 
certain operators and 4 ( x ,  t )  is an arbitrary scalar function. The infinite-dimensional 
Abelian group of transformations (1.2) plays an important role in the analysis of the 
group theoretical properties of nonlinear evolution equations integrable by the problem 
(1.1). 

In this paper the transformation properties of (1.2) under the gauge transformations 
which conserve (1 .1)  are considered. It is shown that the whole uncertainty which 
appears in the construction of transformations (1.2) is of a pure gauge nature. A 
manifestly gauge invariant for transformations (1.2) is also given. 

The paper is organised as follows. In § 2 a group of the gauge transformations 
which preserve ( 1.1 ) is considered. The gauge invariants are calculated. In 0 3 a direct 
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scattering problem for (1.1) is discussed and some important relations are obtained. 
In Q 4 the recursion operator is calculated. The BC group is constructed in § 5 .  In § 6 
the transformation properties of (1.2) under gauge transformations are considered and 
the manifestly gauge invariant part of ( 1.2) is obtained. The general form of nonlinear 
equations integrable by the problem (1.1) is calculated in 0 7. Examples of transforma- 
tions ( 1.2) for the case N = 2 are given in 0 8. 

2. The gauge group 

The spectral problem ( 1 .  l ) ,  as it is easy to see, is invariant under the transformations 

n = O  

where g ( x ,  t )  is any differentiable function such that g ( x ,  t )  -qxl+m 1 and C: = 
n ! / ( n  - k ) !  k ! .  The transformations (2.1) form an infinite-dimensional Abelian group 
of gauge transformations for the problem (1.1). This group is the subgroup of the 
general gauge transformations group which was discussed in [ 18, 191. 

It is clear that there exist N - 1 independent functions 

vO, * ' * , vN-I), wl( vO,. . . 9 vN-I), . . . 5 wN-2(  vO, * 1 * 9 v N - I )  

which are invariant under the gauge transformations (2.1) i.e. the functions such that 
wk( fa,. . . , fN-,) = wk( v,, . . . , vN-,), ( k  = 0,1, . . . , N - 2). An explicit form of the 
invariants WO, W , ,  . . . , WN-2  can be found directly from (2.1) by excluding the function 
g ( x ,  t ) .  For our purpose the following set of the invariants is convenient [20,24]: 

The gauge invariance of the problem (1 . l )  allows us to impose additional constraints 
(gauge conditions) on the potentials V,, V,, . . . , V N - , .  For example, one can transform 
any linear superposition z:=-,' (Ykvk(x, t )  into zero and, in particular, any (but only 
one) potential v k  into zero by an appropriate gauge transformation. We will shortly 
refer to the gauge condition as the gauge. The transition from one gauge to another 
one is performed by a certain gauge transformation. 

For the further purposes it is convenient to represent the spectral problem (1.1) in 
the well known matrix- Frobenius form 

a F / a x  = ( A +  P ( x ,  t ) ) F ,  

where F = ($, a$, . . . , aN- '+)T and 

0 1 0 . . .  0 

A =  11 1 1 : :  :I, p =  
A N  0 0 . . .  0 

0 . . .  0 0 

(2.3) 

(2.4) 
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The gauge transformations (2.1) have now the form 

F + f i = G G F , P + F = G ( A + P ) G - ' - A + ( a G ) G - '  (2.5) 

where Gik = C f I ; a ' - k g ( x ,  t ) ,  i 3 k ;  Gik = 0 ,  i < k By introducing the N-component 
column V er( Vo, V I ,  . . . , V N - l ) T ,  one can represent the gauge transformation (2.5) in 
the form 

v-. F = . ( g ) V + V ( g )  (2.6) 

where . (g )  = g ( G T ) - '  and y k ( g )  = C L g d N V k (  l / g ) ,  ( k  = 0 , .  . . , N - 1). 
Using the explicit form of . (g)  and Y ( g ) ,  it is not difficult to show that 

4 g M g l )  = . (g ,g , ) ,  7%1g2) = . ( g d Y ( g 1 ) +  W g 2 )  (2.7) 

i.e. that the transformations (2.6) indeed form a group. 

example, the invariants can be written in the form 
The form (2.6) of the gauge transformations (2.1) is useful for many purposes. For 

w = .(;-I) v+ 7"(;-l) (2.8) 

where W e' (WO,. . . , WN-2, O)T and ;(X, t )  = exp(-( 1/N) I" dx' V N - ' ( x ' ,  t ) ) .  Then 
the potentials v k  can be represented as the functions on invariants wk and 'gauge' 
variable p ( x ,  t )  

(2.9) V(X, t )  = . (p )  w+ Y b ) .  

3. Direct scattering problem and some important relations 

We will study the problem (1.1) in the form (2.3). We assume that v k ( x ,  t ) + O  at 
(xI+co so fast that all integrals which will appear in our calculations will exist. 

We introduce, in a standard manner [l-31, the fundamental matrix solutions 
F+(x, t ,  A ) ,  F-(x, t, A )  of the problem (2.3) given by their asymptotic behaviour 

where E ( x ,  A )  = D ( A )  exp(&) is the fundamental matrix solution of the equation 
aE/ax = AE, where A is the diagonal matrix: A i k  = A q i - ' S i k ,  Dik = N-1'2(Aqk-') i - ' ,  
( i ,  k = 1, . . . , N )  and q = exp(2ri lN).  Here and below Sik is Kronecker symbol ( Sik = 
{i; :;:). Let us note that A q i - ' ,  ( i  = 1, . . . , N )  are eigenvalues of matrix A, by definition 
and A = DAD-'. 

In a standard manner we introduce the scattering matrix S(A, t ) :  F + ( x ,  t ,  A )  = 
F-(x, t ,  A ) S ( A ,  t ) .  

Let P ( x ,  t )  and P'(x, t )  be two different potentials and F+ ,  F+', S, S' be correspond- 
ing solutions and scattering matrices for (2.3). One can show that 

+W 

S'(A, t ) - S ( A ,  I ) = - [  dx(F-(x, t, A))-'(P'(x, t ) - P ( x ,  t ) ) ( F + ( x ,  t, A ) ) ' .  (3.2) 

Formula (3.2) which relates a variation of the potential to those of the scattering 
matrix plays a fundamental role in the AKNS method. 

The mapping P+ S(A, t )  given by the spectral problem (2.3) establish a correspon- 
dence between the transformations P on the manifold of potentials 

--OD 
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{P(x, t ) ,  P(x, t )  +lxl+m 0) and the transformations S +’SI on the manifold of the 
scattering matrices {S(A, t ) } .  

We will consider only transformations B such that 

S(A, f ) +  S’(A, t )  = B-’(A, t )S(A,  t)C(A, t )  (3.3) 

where B(A, t )  and C(A, t )  are arbitrary diagonal matrices (i.e. B , k  = & ( A ,  t )& ,  c i k  = 
C i ( A ,  t)&, i, k = 1, . . . , N ) .  We confine ourselves to transformitions of the form (3.3) 
for two reasons: ( 1 )  the linearity of the transformation law (and, therefore, its ready 
integrability) of the scattering matrix is the principal idea of the IST method (see e.g. 
[l-41) and (2) the generalised AKNS technique allows us to construct, in an explicit 
form, the transformations of the potentials P + P’ which correspond to the transforma- 
tions of the scattering matrix of the form (3.3). 

Let us rewrite the transformation law (3.3) in the form S’-  S = ( 1  - B)S’- S( 1 - e). 
From the comparison of it with (3.2) we find 

+CO 

(S-l( 1 - B ) s ) F =  -1 dX((F+)-’(P’- P ) ( F + ) ’ ) F  (3.4) 
-m 

where for arbitrary matrix (0 we denote by OF the off-diagonal part Of matrix @: (@F)ik = 
@ik - @,&, (i, k = 1, . . . , N ) .  Furthermore, it is not difficult to justify that the following 
identity holds 

(S-’(A, t ) ( l -B(A,  t ) ) S f ( A , t ) ) F = [  dx{(F+(x,t,A))-’(P(x, t ) ( l - B ( A N ,  t ) )  
+W 

-m 

- ( I  - N A N ,  t))P’(x, t ) ( F + ( x ,  t ,  A ) ) %  (3.5) 

where B(A 
(3.4) and (3.5) we obtain 

t )  = DB(A, t )D-’ .  Equating the left- and right-hand sides of equations 

+m 1 d x T r ( B ( A N , t ) P ’ ( x , t ) - P ( x , t ) B ( A N , t ) ) @  +-+m (x,t ,A))=O 
-m 

(3.6) 

+-+ 

F7:’(@ ) I , % ‘ ( F + ) { ~ ( F + ) ; ,  ( i , k l , m = l ,  . . . ,  N ) .  

where Tr denotes the matrix trace. The quantity @ is the tensor product (F+)’  and 

Since all elements of matrix A are different, matrices B and B = D-IBD can be 

+-+(ik) 

represented (see [21]) in the forms: 

where & ( A N ,  t )  are scalar functions. Using these expressions one can rewrite (3.6) in 
the form 

where (a) ef jTz dx Tr(@(x)). 
The equality (3.7) is the fundamental relation between P ( x ,  t ) ,  P’(x,  t )  and 

F+(x, t, A ) ,  F”(x, I ,  A )  under transformations (3.3) of the scattering matrix. This 
equality contains the quantities Ak(A N), & ( A  ”, t ) ,  ( k  = 0, . . . , N - 1)  which explicitly 
depends on spectral parameter A N .  The next step (which is standard for the AKNS 
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technique) consists in the converting of the relation (3.7) into the form which does 
not contain explicit dependence on A N .  In order to do this one must calculate the 
so-called recursion operator. 

4. Recursion operator 

So it is necessary to be able to exclude the explicit dependence on A N  in expressions 

of the form ( A k ( A N ) P ' - P A k ( A N ) ) B k ( A N ,  t)8(F), ( k = 0 ,  1 , .  . . , N -  1 )  in (3.7). This 
can be done with the use of a recursion operator. Let us calculate it. Using equation 

(2.3) and equation d F - I / d x = - F - ' ( A + P ) ,  one can show that x('") satisfies the 
equation 

+-+ +,+ 

aX('")(x,  t ,  A ) / d x  = [ A ,  @('")]+ P$('"l- @"")p. (4.1) 

By virtue of the special forms of the matrices A and P ( x ,  t ) ,  all matrix elements of 

F ( ' n )  can be expressed through N matrix elements ( @ ( ' " ) ) k N ,  ( k  = 1,. . . , N )  [14, 

Let us introduce the operation Ak of projection onto the column of the matrix: 
oAk: (aAk)', = @&k, ( i ,  1 = 1, . . . , N ) .  With the use of (4.1) and explicit forms of A 
and P one gets [ 14,201: 

+,+ 

201. 

m=O 

where P = a  - A +  P'(x ,  t ) ,  (@ 0 v m ) , k  2' OikVm. Then it is not difficult to show that the 
operator 8" is linear on A N  

g"' = A Nrm + S,, m = 0 ,  1 , . . . ,  N. (4.3) 

Substituting (4.3) into (4.2), we obtain 

where 
N N 

% =  1 r m V m - l ,  9=- 1 smvm (4.5) 
m=O m = O  

where VN 3 1 .  

operator Ce is a lower triangular one: 
With the use of equations (2.4), (4.3) and ( 4 . 9 ,  one can show that the matrix 

, 0 0 0 . . .  0 o \  

where C e i i - ,  = - Nd + VN-l - VL-, ,  ( i  = 1,2, . . . , N )  ; %iik = 0, k > i and all the rest matrix 
elements of Ce are more complicated. The elements of the first line of the matrix 



Backlund - Calogero group for  the spectral problem 1879 

operators s k  are: 

( s k ) I I =  cf;'(-a) k + l - f  9 

( s k )  1 I = 0, 

( s N ) l I =  c&'(-a) KI, 

1 =  1, .  . . , k + l ;  

1 = k+2 , .  . . , N ;  k = l ,  . . . ,  N-1 .  (4.7) 

1 = l i  . . . ,  N. N + I - l  - 

Therefore the matrix operator 3 is a degenerate one. As a result, the first equation 

(4.4) is a relation between 0 k N ,  ( k  = 1, . . . , N )  which does not contains A N ,  i.e. the 
constraint. The expression for this constraint can be obtained with the use of (4.7): 

+-+ 

(4.8) 
k = l  

where 
N - k + l  

I k = -  c k - 1  k + n - l  ( - a ) f l v k + n - l -  Vk-l' v L - l *  (4.9) 
n = l  

The degeneracy of the matrix operator 3 (its rank is N - 1 )  and the existence of 
the constraint (4.8) are the fundamental properties of equation (4.4) which serves for 
the calculation of the recursion operator. Such a situation is a typical one for AKNS 

method [5- 151. 
There are two ways to deal with the constraint (4.8). 
(1) The first way is to solve equation (4.8) with respect to one of the components 

?+ 
@ k N ,  ( k  = 1, . . . , N) and to calculate the recursion operator which acts on the space 
of ( N  - 1)-independent variables; (2) the second way is to not solve the constraint 
(4.8) and to define an action of the recursion operator on the whole N-dimensional 
space of all components @ k N ,  ( k  = 1 , .  . . , N) .  

Usually only the first (standard) way of solving the constraint was used in the 
framework of AKNS method for different spectral problems [5-151 and also for the 
problem (1.1) [15]. In the present paper we will follow the second way of dealing 
with constraint. Let us calculate the recursion operator which acts on the N-  

dimensional space of all components @ k N ,  ( k  = 1, . . . , N). 
+-+ 

Let us denote 

(4.10) 

and introduce the operator M with the following matrix elements 

M l k  = 8 i k  - 8 1 ~ / h ' l k ,  ( z ,  k =  l , . .  . , N). (4.1 1 )  

By virtue of (4.6), equation (4.4) is equivalent to the equation 

hN%x = E , ~ X  (4.12) 

supplemented by the constraint, which can be represented as follows 

x = Mx = Mx( N ) .  (4.13) 

The equivalence of two forms (4.8) and (4.13) of constraint follows from the fact that 
the operator I ,  has in this case a trivial kernel. 
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Then we introduce the operator 9 such that GCe = EN. For (4.12) and (4.13) we have 

(4.14) 

The operator As = M 3 9  is just the recursion operator which acts in the whole N- 
dimensional space ( x l , .  . . , xN). Equation (4.14) is compatible with (4.13). However, 
As is not the most general recursion operator which can be defined on the whole 
N-dimensional space. 

The general form of the recursion operator which acts on the whole N-dimensional 
space x = ( x I  , . . . ,  x , ~ ) ~ ,  A N x ( A ) = A x ( A )  is 

(4.15) 

where 1 %f ( I , ,  . . . , IN), Q '!2f ( Q1,. . . , where QI ,  . . . , QN are arbitrary operators 
and O denotes a tensor product. 

Indeed the difference A -  As = A  should satisfy the condition A x  = 0. Since x has 
N - 1 independent components, the rank of the matrix A is equal to 1. As a result, 
taking into account (4.8), we have A, = Qilk where Qi are arbitrary operators. (4.15) 
is proved. 

Taking into account that 1 .  M =0,  we see that the operator A" has a structure 
analogous to (4.15), i.e. 

A" =A:+Q,.)OI (4.16) 

Therefore, there exists a certain freedom in the construction of the recursion operator 

In our further calculations we will also need the operator A' adjoint to the operator 

der 
A "x = Mg9x = A,x. 

A = As -t Q O  1 

where Q(") are certain operators. 

which acts on the whole N-dimensional space. 

A with respect to the bilinear form 

(4.17) 

The operator At  is 

A ~ = A : + I ' @ Q '  where AS= 9 'GtMt .  (4.18) 

One also has 

(A')" =(A:)"+ltOQ:,,). (4.19) 

The operator M t  adjoint to the operator M (4.11) has the following properties: 

ENMt = M t ,  MtEN =EN, ( Mt)2  = M t  

The operators %', 9', r', and s', are calculated by formulae 
N N 

%+= c v,r;-1, 9'=- c V J ; ;  ( ? ? ' ) " ' = A N r L + ~ L ,  
n = O  n = O  

(4.20) 

( m = 0 , 1 ,  . . . ,  N ) .  

(4.21) 

With the use of (4.12) and (4.13) it is not difficult to obtain the operator A N  = %?FM 
which acts on the subspace of ( N  - 1)-independent variables x ( ~ )  '!2'(xI, . . . , xN- , ,  O)T; 
A "x(,.,) = A N x ( N ) .  The operator A', adjoint to the operator AN has the form 

A h  = Mt.Ft4+. (4.22) 

Note that the recursion operator AN is defined uniquely. 
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5. Backlund-Calogero group 

Here we obtain the nonlinear transformations V -+ V' which corresponds to the transfor- 
mations (3.3) of the scattering matrix. For this we must exclude the explicit dependence 
on A N  which is contained in (3.7). 

Firstly we see that Ak is the linear function on A N :  

A ~ ( A ~ ) = A ~ ( R ~ ) ~ - ~ + R ~ ,  k = 0 , 1 ,  ..., N (5.1) 
k I+-+ +-+ 

where R i k = & + l ,  ( i , k = l ,  ..., N). 
0, 1 , .  . . , N - 1)  in (3.7) we have: 

For the quantities ( A  P @ - A k @ P ) ,  ( k =  

Then one can show from (4.1) that [14]: 

m = O  

= ( h N ' $ , k ) + s ( k ) < d A d - k 9  ( k = O , l , .  . . , N -  1)  
where 

(5 .2 )  

(5.3) 

def 
%(k)" r k - m V N - m ,  s ( k )  = S k - m V N - m ,  (k=O, 1 ,..., N-1). (5.3) 

m=O m=O 

Let us introduce the column with N components V ( x ,  t )  !Zf ( Vo(x, t ) ,  . . . , 
VNWI(x ,  r ) )T  and proceed according to (4.10) from & A N  to x Zf ( X I , .  . . , X N ) ~ .  By 
using the relations A ",y = Ax, Bk(A ", t ) ~  = Bk(A, t ) X ,  (k  = 0, I , .  . . , N - 1)  and also 
(4.17), (4.18), (5.1)-(5.3) we obtain for (3.7): 

++ 

The freedom analogous to that of At (4.18) and (At)" (4.19) appears in the 

(5.6) 

calculation of the operators X :  and A: too. These are of the form: 

2: 2f A + % [ k )  + F : k )  + It 8 @ k ) ,  

G i ( k ) ,  . . . , & ( k )  are arbitrary operators and 

& L '2' At  R N - k  4- ( R T )  -I- It 0 &k) 

where 0 : k )  gf(d:~), . . . 9 o t N ( k ) ) ,  6 ( k )  er ( 6 : ( k ) ,  . . . 9 6 t h ( k ) )  and ( ? ; ( k ) , .  * * 9 i ) k ( k ) ;  

k k 

%:k )=  V N - m r : - m ,  5 : k ) =  V N - m S L - m .  (5.7) 
m=O m = O  

The variables x,, . . . , xN in (5.5) are not independent and obey the constraint (4.8). 
As a result, from the equality ( 5 . 5 )  it follows 

where &(At ,  t ) ,  (k  = 0, 1, . . . , N - 1) and f ( A t ,  t )  are arbitrary functions complete on 
At and A t ,  Xi, A; are any operators of the form (4.18), ( 5 . 5 )  and 4(x, t )  is an arbitrary 
scalar function. 
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Indeed, it follows from (5.5) that XF=-: &(At ,  t ) ( x 6 : V ' - A L V ) = Z t  where Zt is 
any column for which its adjoint Z obeys the condition Zx = 0. It is not difficult to 
see that the general form of 2 is z k  = f ( A N ,  t ) 4 ( x ,  t )& ,  ( k =  1, .  . . , N) where 4 ( x ,  t )  
and f ( A  ", t )  are arbitrary scalar functions. Using A "x = Ax, we have Z&k(A) = 
4 ( x ,  t ) l k ( f ( A ,  t ) X ) k .  Therefore, 2: = ( f ( A t ,  t ) l t ) k 4  and hence (5.8) is proved. 

The relation (5.8) is equivalent to the following 

where A: = 9' g t M t  and 4 ( x ,  t )  is an arbitrary scalar function and 
def d e i  

x ; s ) k  = A ~ ~ ~ k ) + ~ ~ k ) ,  A : S ) k  = ASRN-k + ( R T ) k  ( k = O ,  1 , . . . ,  N-1). 
(5.10) 

Indeed substituting the expression (4.18) for At into (5.8), using (4.19) and the fact 
that M t l t  = 0, we obtain (5.9). 

So (5.9) gives the general form of nonlinear transformations V +  V' which corre- 
sponds to the transformations (3.3) of the scattering matrix. Now the operators AS, 
x ; s ) k ,  A : s ) k  in (5.9) are defined uniquely and all uncertainties connected with the 
existence of the constraint (4.8) are contained in the term lt4 only. 

Multiplying the left-hand side of (5.9) by M t  and using the relations M i l t  = 0, 
b f t (AS)"  = ( A L ) " M t ,  MtX:,)k =  xi(^), MtAr , )k  = d d ? k ) N  We obtain 

(5.11) 

where 

We emphasise that the whole uncertainty disappears after proceeding from (5.9) 
to (5.11). The relation (5.11) is just the same relation between V and V' which can 
be obtained from (3.7) by excluding the explicit dependence on A N  with the use of 
recursion operator A N  (4.22) which acts in the space of ( N  - 1)-independent variables 

d e i  T 
X ( N )  = ( X I , .  * * 9 XN-I, 0 )  . 

The system of equations (5.11) due to the special forms of operators A;,, 
and contains N - 1 non-trivial equations. The system (5.9), in contrast, contains 
N non-trivial equations. 

It is easy to see that the transformations (3.3), (4.31) or (3.3), (5.1 1 )  form an Abelian 
infinite-dimensional group. We will refer to this group as the Backlund-Calogero 
group (BC group). The BC group acts on the manifold of the scattering matrices 
{S(A, t ) }  by the formula (3.3) and on the manifold of the potentials { V ( x ,  t ) }  by the 
formulae (5.9) or (5.11). 

Backlund was the first who considered concrete transformations of the type (5.1 1) 
(see e.g. [22]). Calogero constructed the general transformations of the form (5.1 1) 
(for the case N = 2 in the gauge VI = 0) for the first time [23,4]. 

6. Gauge invariance and manifestly gauge-invariant formulation 

Let us consider the transformation properties of nonlinear transformations V +  V' (5 .9 )  
and (5.1 1 )  under the gauge transformations (2.1). Let the quantities F, V and F', V' 
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are transformed independently with the different gauge functions g l ( x ,  t )  and g2(x ,  t ) :  

F -  F =  G,F, 
gl g2 

81 g2 

F' -  F'= G 2 F ' ,  

v- v= ~ ( g l ) v + ? " ( g l ) ,  v '  __* F' = T (  g2) v' + ?"( g2) (6.1) 

Let us obtain the transformation laws of the quantities which have appeared in the 
where GI = G ( g , ) ,  G2= G ( g 2 )  and G ( g ) ,  d g ) ,  V ( g )  are defined in § 2. 

previous section. From the definition Q ( x ,  t, A )  and (6.1) it follows that 

@ 

++ 

(g,,g21 +-+ +-+ 

(6.2) +-+(in) ( x ,  t ,  A )  - @'"')(x,  t ,  A )  = G2(x, t ) @ ' " ( x ,  t ,  A ) G ~ ' ( x ,  t ) .  
++ 

def +-+ +-+ +-+ 

For the columns x 2' ( @ N, . . . , @ N N ) T  and x ( N )  = ( @ I N ,  . . . , @ N - l  N ,  O)T the law 
(6 .2 )  gives 

(6.3) 

Using the explicit form of the operators Ik (4.9), transformation properties V, V' 
and d g l ,  g2) 5 ( l / g l ) G ( g 2 )  we get 

where i, = I k (  F, PI, ( k  = 1,. . . , N ) .  In particular, for m = N from (6.4) we have 
fN(g2 lg l )  = (g2/g1)L.  

It follows from (6.3) and (6.4) that the constraint (4.8) is the gauge invariant one; 

(6.5) 

Then the relations i = A& = $.rrxcN, = ~ T X  = 
the operator M (see (4.11) and (4.13)): 

( g l  x 2  1 

where fi %'M( q F'). 

tions is the following 

give the transformation law of 

M - fi = d g 1 ,  g,)M.rr-l(gl, g2) (6.6) 

The transformation law of the recursion operator AS under the gauge transforma- 

( g , x , )  

A: - A i  = ( .rr t (gl ,  g 2 ) ) - ' A ; 7 r t ( g ~ ,  g2)+ PC3 Qt (6.7) 
where 

def 

i: = A i (  F, ?), Q'=(Q:,  . . . , Qh); Q:, . . . , Q'N 
are certain operators uniquely defined by the gauge transformation. 

Recursion operator A h  on the contrary to A: has homogeneous transformation law 

where Ah = A h (  P). The relation (6.8) can be proved by using the transformation 
law (6.3) and the fact that A h  acts on the subspace of N -  1 independent variables 

+-+ +-+ 

X ( N ) =  ( @ I N , .  . * , @ N-IN, O)T. 



1884 V G  Dubrovsky and B G Konopelchenko 

and so on; v k ( x ,  t ) ,  (k = 0, 1, . . . , N - 1)  are certain scalar functions uniquely defined 
by the gauge transformation (6.1). 

From (6.9) and (6.10) we obtain the transformation laws of the nonlinear transforma- 
tions V +  V' (5.9) and (5.11) under the gauge transformations (6.1): 

(6.1 1 )  

(6.12) 

where the function 6 can be expressed through 4, Qt,  Bk and q k ( k  = 0,1 , .  . . , N - 1 ) .  
In the case N = 2, Bo = const and B1 = const this expression is given in 5 8. 

From the form of the relation connecting 6 with a, Q', Bk and (Pk (k = 0,  . . . , N - 1) 
it follows that for a given CP it is always possible to find such a gauge function g , ( x ,  t ) ,  
g,(x,  t )  to obtain any function 6 given in advance. In particular, one can always 
convert any 4 into 6 = 0. Therefore the transformations V +  V' of the form (5.9) with 
the same functions Bkr ( k  = 0, 1 , .  . . , N - 1)  and different functions 6 are gauge- 
equivalent to each other. Thus, the whole freedom which appears in transformations 
V +  V' (5.9) is of the pure gauge nature. 

Gauge-invariant formulation of the nonlinear transformations V + V' ,  which corre- 
sp,ond to the transformation law (3.5) of the scattering matrix, one can obtain from 
(5.11) by using the special gauge transformation from the potentials V, V' to the 
invariants W, W' or equivalently, one can pick out from (5.9) its gauge-invariant 
part, this can be done by multiplying (5.9) by M'.  

Indeed, multiplying (5.9) by M', we get (5.1 1). Then we make the special gauge 
transformations (6.1) from the potentials V, V to the invariants W, W': 

w= r ( p ' ; ' ) V +  v(p';'), W'= 7 ( b ; ' )  v+ v(p;l) (6.13) 
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where 

g,(x, t ) = 6 ; 1 = e n p ( $ / x d x ’  V h - l ( x ’ ,  1 ) ) .  

where 
def de i  def 

A L  = A k (  W, W ’ ) ,  x L ( W )  = Xtk(N)( w, w’), J U L W )  = A t k ( N ) ( %  w’)* 
(6.15) 

So the nonlinear transformations of the BC group ( 5 . 1 1 )  can be represented in the 
manifestly gauge-invariant form: 

Now let us pay attention to the fact that the general Backlund-Calogero group, 
which was constructed in the previous section, contains as the subgroup the group of 
gauge transformations. 

Indeed, let us consider, for example, the transformation (5.9) with Bo= 1, Bk = 0, 
( k =  1 , .  . . , N -  1 ) .  It has the form V ’ =  V +  1’4 or, in components, 

This is the gauge transformation (2.1) with a gauge function g(x ,  t )  = ( 1  - 4 ( x ,  t ) ) - ’ .  
We emphasise that the potentials V, V’ in general transformations (5.9) and (5.1 1) 

of Backlund-Calogero group are transformed under the gauge transformations 
independently with the different gauge functions g , ( x ,  t )  and g,(x,  t ) .  

7. General form of nonlinear equations 

The BC group constructed in 0 5 contains the transformations of various types. Let us 
consider its one-parameter subgroup given by the matrices 

N -  I 

B(A, t )  = C(A, t )  = eXp( -If’  dS ak(A N ,  S ) ) A k .  
k = O  f 

(7 .1)  

It is easy to show that the transformation (3.5) with the matrices B and of the form 
(7 .1)  is a displacement in time t :  S’(A, t )  = S(A, t ’ ) .  The corresponding transformations 
(5.9) and (5.11) give, in the explicit form, the time evolution of the potential V :  V ( x ,  t )  + 

V ( x ,  t ’ ) .  Different evolution laws correspond to different functions a k ( A  N ,  t ) .  An 
identity transformation is given by the functions Bo = 1, B ,  = . . . = B N - ,  = 0. 
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Here we obtain from the transformations (5.9) the corresponding nonlinear 
equations. Let us consider the infinitesimal displacement in time: t + t’ = t + E where 
E + 0. In this case 

V(x, 2 ’ )  = V(x, t + E )  = V(x, t )  + &(a  V(x, ? ) / a t ) ,  

Bk(hN, t ) = 8 , - E f i k ( h N ,  t ) ,  k = O , l , .  . . , N -  1 (7.2) 

9(x,  t )  = E d X ,  t )  

where q(x, t )  is an arbitrary scalar function. Substituting (7.2) into (5.9) we obtain 

where L: Ef A : / ~ =  V,,  z : s ) k  = ( x ; s ) k  -,&:,)k)lV= V, and the operators A:, r t : s ) k ,  & l , ) k  are 
given by the formulae (4.18), (5.10). 

The system of N equations (7.3) is just the general form of the evolution equations 
integrable by the problem (1.1) via the inverse scattering transform method. The 
transformations (5.9) are the general Backlund-Calogero transformations for the 
equations (7.3). In the case aBk/dt = 0, (k  = 0, .  . . , N - 1) the transformations (5.9) 
are the general auto-Backlund transformations for the equations (7.3). The infinite- 
dimensional group of auto-Backlund transformations also contains as a subgroup an 
Abelian infinite-dimensional symmetry group of the equations (7.3). 

In more details, the properties of evolution equations (7.3) have been considered 
in [20]. 

8. The examples: N = 2 

The general formulae (4.9), (4.1 1) give 

I : =  -a2- v,a+ vh- v,, r :=-2a+v; -v , ,  

+m 

( I ; ) - ‘  = f exp(: [ ( VI - Vi)) [ dy exp( -: [+m ( VI - Vi)). 
X -m Y 

From the formulae (4.18) and (4.21) we have for the operator AS: 

(8.2) 

For x : s ) k V ‘ - d F s ) k v ,  ( k = 0 ,  1 )  from (5.7), (5.10) and (8.2) one can obtain the 

) v;, - (a Vh)( l y ,  ((a Vb) - VhQ( 1:) - I f ; (  1;)  -1 A : = (  v; -(a  V;)(/;)-l- I:( l ; ) - I ,  ( f ; +  (a Vi) - v;z;)(f;)-~z;(/;)-~ ’ 

following expressions 

x;s)ov’-&~~)ov= v -  v, 
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Let us write out the basic quantities and relation for the gauge transformations. 
The formulae (2.1) and (6.3) give 

(8.4) 

In the case N = 2  there exists only one invariant WO which has the form 

w 0 -  - v 0 -I 28 v I -'VZ 4 I .  (8.5) 

It was shown in [24] that the Miura and the Gardner transformations [ 2 5 ]  are the 

qo= -I ,av,-tv: (8.6) 

as it follows from (8.5) is the gauge transformation from the gauge ( Vo = 0, VI) to the 
gauge ( CO, = 0). Let us consider the general linear gauge aoVo+ a I  VI = 0 where a. 
and a l  are constants. One can introduce the function u(x, t )  such that VO=Pou,  
VI = P l u  where Po and P I  are some constants (aoPo+ a l p I  = 0). From (8.5) we obtain 
the Gardner transformation 

U'= (Po/PA)u -t(PI/P;)au -$(P:/P;)U' (8.7) 

as the gauge t_ransforma_tion from one general linear gauge ( Vo = pou, VI = P I  U )  to 
another one ( Vo = PA;, VI = P I ;  = 0) with PI  = 0. 

With the use of (8.3) and (8.4) by the direct calculations one can for the relations 
(6.12) the following expressions: 

x:s)k v - A:s)k 

gauge transformations. Indeed, the Miura transformation 

= r t ( g l  9 g2)( *:s)k 31 - 2 l s ) k  f ) + It 'Pk, ( k = 0 ,  1) 

where (8.8) 

(8.10) 

The nonlinear transformations V-, V of the form (5.9) with the constant Bo and 
where 6 =(#I -Bopo- B 1 q l ) ( g l / g z )  and po, pI are given in (8.8). 

BI are given by the relations 

(8.11a)  
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Bo(V;- Vl)+Bl{VA+ Vo+i(a(Vi+ Vl))+i(V:- Vi’)} 

(8.11b) 

Let us also present some nonlinear equations integrable by the problem (1.1). From 
the invariant part of the system of equations (7.3) we have 

a Wo/at + a3 WO+ 6 WO a WO = 0, w 0 -  - v 0 -iav 2 1 -Lv2 4 1 .  (8.12) 

In the gauges (V,, V, = O) ,  ( Vo= 0, VI) and ( Vo = pou, VI =&U) from (8.12) one 
can obtain the Kdv,  mKdV and Gardner equations respectively 

a Vo/a t + a3 Vo+ 6 Vo a Vo = 0, 

a v , / a t + a 3 ~ ,  -$v: av, =o,  
a u / a t + a 3 ~ r + 6 p 0 u  au-$p:u2au = O .  

(8.13) 

(8.14) 

(8.15) 

Let us return to the transformations (8.1 1) .  Putting VI = Vi = 0 and excluding then 
the function C#I one can obtain the well known Backlund transformation (BT) [ 2 2 ]  for 
the K d v  equation 

2B0( Vb - Vo) + Bid( V& + Vo) + Bl ( Vb - Vo) ( Vb - Vo) = 0 Sb 
or (8.16) 

a( Vb + V,) + ( Vl, - Vo)[ (2 Bo/ E , ) *  - 2( V& + V,) ] I”  = 0. 

By performing an analogous calculation in the gauge V, = Vb = 0 one can obtain 
from (8.1 1 )  the relation 

{a+;(V,+ v~)}{ ;B la (v~+v , )+Bo(V’ l -  v , ) + g B , ( V ; -  VI) (Vi2- v:, S a  
From this relation we have the well known BT for the mKdV equation 

2Bo( v; - VI) + B,a( vi + VI) - fB,(  v; - VI) ( vi2- v:, = 0. 5 ,  
The integral term in the last equation can be easily excluded and the BT for the mKdV 

takes the form 

The function 4 can be excluded from (8.11) before fixing a gauge. Excluding 
4 after some calculations one can obtain from (8.1 1) 

2Bo( Wb- W,)+B,d( w;+ Wo)+B,( Wb- WO) (8.18) 

e.g. the invariant part (6.15) of the transformations (5.9) of the BC group. 
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Let us fix the gauge in (8.18) by the following way: ( V o = p o u ,  V l = P l u )  and 
( V h =  poult Vi =piu'). Then from (8.18) we have 

Bo( Wh- W,)+$B,d( Wb+ W,)+!B,( Wb- WO) 

=[P,-fp,a-SP:(u’+u)] B o ( u ’ - u ~ + $ B , a ( u ’ + u )  

[ P 0 ( u ’ -  U )  -fp:(u”- U’)] = 0. ) + $ B , ( u ’ - u )  [I, 1’ 
--CO 

(8.19) 

From (8.19) we obtain the Backlund transformation for the Gardner equation (8.15) 

2 B , ( u ’ - u ) + B , a ( u ’ + u )  

+ B , ( u ‘ -  U )  [ P , ( U ’ -  U )  -fp:(u”- U’)] = 0. i l  
The integral term in this equation can be excluded and, as a result, we get 

a(u’+ U)+ (U’- u)[(2B,/B1)’-2B,(u’+ u ) + $ : ( u ’ +  u ) 2 ] 1 / 2 =  0. (8.20) 

In the mixed gauge (V,, VI = 0), (Vb = 0, Vi) from (8.18) we obtain the following 
relation after excluding the integral term: 

a( -fa vl, - a  Vl,’ + V,) + (-$(a Vl,) - a  vl,’ - V,) 

x[(2B,/Bl)2-2(-$dV; -+viz+ V,)]’/2=0. (8.21) 

The transformation (8.21), as it is easy to see, is the product of the BT from Vo to Vb 
( BT (8.16) for the Kdv) and Miura transformation V, = -+a Vi -4V:’. 

Analogously, one can prove that the transformation (8.18) in the gauges ( Vo = 0, VI) 
and (Vb, Vl, = 0) is the product of the two transformations: BT (8.17) for the mKdV 

from V, to Vl, and Miura transformation Vh = -&3Vl -fV: from Vi to Vh. 
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